3.7.41 \(\int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx\)

Optimal. Leaf size=104 \[ \frac {1}{3} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{5/2}-\frac {1}{12} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}-\frac {1}{8} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}-\frac {1}{8} \cosh ^{-1}\left (\sqrt {x}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {280, 323, 330, 52} \begin {gather*} \frac {1}{3} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{5/2}-\frac {1}{12} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}-\frac {1}{8} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}-\frac {1}{8} \cosh ^{-1}\left (\sqrt {x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(3/2),x]

[Out]

-(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*Sqrt[x])/8 - (Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(3/2))/12 + (Sqrt[
-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(5/2))/3 - ArcCosh[Sqrt[x]]/8

Rule 52

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[(b*x)/a]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rule 280

Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*
x)^(m + 1)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p)/(c*(m + 2*n*p + 1)), x] + Dist[(2*a1*a2*n*p)/(m + 2*n*p + 1), Int[
(c*x)^m*(a1 + b1*x^n)^(p - 1)*(a2 + b2*x^n)^(p - 1), x], x] /; FreeQ[{a1, b1, a2, b2, c, m}, x] && EqQ[a2*b1 +
 a1*b2, 0] && IGtQ[2*n, 0] && GtQ[p, 0] && NeQ[m + 2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x
]

Rule 323

Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(2
*n - 1)*(c*x)^(m - 2*n + 1)*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1))/(b1*b2*(m + 2*n*p + 1)), x] - Dist[(a
1*a2*c^(2*n)*(m - 2*n + 1))/(b1*b2*(m + 2*n*p + 1)), Int[(c*x)^(m - 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x],
x] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && GtQ[m, 2*n - 1] && NeQ[m +
2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]

Rule 330

Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k =
Denominator[m]}, Dist[k/c, Subst[Int[x^(k*(m + 1) - 1)*(a1 + (b1*x^(k*n))/c^n)^p*(a2 + (b2*x^(k*n))/c^n)^p, x]
, x, (c*x)^(1/k)], x]] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && Fractio
nQ[m] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]

Rubi steps

\begin {align*} \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx &=\frac {1}{3} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}-\frac {1}{6} \int \frac {x^{3/2}}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}} \, dx\\ &=-\frac {1}{12} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {1}{3} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}-\frac {1}{8} \int \frac {\sqrt {x}}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}} \, dx\\ &=-\frac {1}{8} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}-\frac {1}{12} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {1}{3} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}-\frac {1}{16} \int \frac {1}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}} \, dx\\ &=-\frac {1}{8} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}-\frac {1}{12} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {1}{3} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}-\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,\sqrt {x}\right )\\ &=-\frac {1}{8} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}-\frac {1}{12} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {1}{3} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}-\frac {1}{8} \cosh ^{-1}\left (\sqrt {x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 99, normalized size = 0.95 \begin {gather*} \frac {\sqrt {\sqrt {x}+1} \sqrt {x} \left (8 x^{5/2}-2 x^{3/2}-8 x^2+2 x-3 \sqrt {x}+3\right )+6 \sqrt {1-\sqrt {x}} \sin ^{-1}\left (\frac {\sqrt {1-\sqrt {x}}}{\sqrt {2}}\right )}{24 \sqrt {\sqrt {x}-1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(3/2),x]

[Out]

(Sqrt[1 + Sqrt[x]]*Sqrt[x]*(3 - 3*Sqrt[x] + 2*x - 2*x^(3/2) - 8*x^2 + 8*x^(5/2)) + 6*Sqrt[1 - Sqrt[x]]*ArcSin[
Sqrt[1 - Sqrt[x]]/Sqrt[2]])/(24*Sqrt[-1 + Sqrt[x]])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.30, size = 176, normalized size = 1.69 \begin {gather*} \frac {\left (\frac {3 \left (\sqrt {x}-1\right )^5}{\left (\sqrt {x}+1\right )^5}+\frac {47 \left (\sqrt {x}-1\right )^4}{\left (\sqrt {x}+1\right )^4}+\frac {78 \left (\sqrt {x}-1\right )^3}{\left (\sqrt {x}+1\right )^3}+\frac {78 \left (\sqrt {x}-1\right )^2}{\left (\sqrt {x}+1\right )^2}+\frac {47 \left (\sqrt {x}-1\right )}{\sqrt {x}+1}+3\right ) \sqrt {\sqrt {x}-1}}{12 \left (\frac {\sqrt {x}-1}{\sqrt {x}+1}-1\right )^6 \sqrt {\sqrt {x}+1}}-\frac {1}{4} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {x}-1}}{\sqrt {\sqrt {x}+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(3/2),x]

[Out]

((3 + (3*(-1 + Sqrt[x])^5)/(1 + Sqrt[x])^5 + (47*(-1 + Sqrt[x])^4)/(1 + Sqrt[x])^4 + (78*(-1 + Sqrt[x])^3)/(1
+ Sqrt[x])^3 + (78*(-1 + Sqrt[x])^2)/(1 + Sqrt[x])^2 + (47*(-1 + Sqrt[x]))/(1 + Sqrt[x]))*Sqrt[-1 + Sqrt[x]])/
(12*(-1 + (-1 + Sqrt[x])/(1 + Sqrt[x]))^6*Sqrt[1 + Sqrt[x]]) - ArcTanh[Sqrt[-1 + Sqrt[x]]/Sqrt[1 + Sqrt[x]]]/4

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 57, normalized size = 0.55 \begin {gather*} \frac {1}{24} \, {\left (8 \, x^{2} - 2 \, x - 3\right )} \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} + \frac {1}{16} \, \log \left (2 \, \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} - 2 \, x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2),x, algorithm="fricas")

[Out]

1/24*(8*x^2 - 2*x - 3)*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) + 1/16*log(2*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt
(sqrt(x) - 1) - 2*x + 1)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 127, normalized size = 1.22 \begin {gather*} \frac {1}{120} \, {\left ({\left (2 \, {\left ({\left (4 \, {\left (5 \, \sqrt {x} - 26\right )} {\left (\sqrt {x} + 1\right )} + 321\right )} {\left (\sqrt {x} + 1\right )} - 451\right )} {\left (\sqrt {x} + 1\right )} + 745\right )} {\left (\sqrt {x} + 1\right )} - 405\right )} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} + \frac {1}{60} \, {\left ({\left (2 \, {\left (3 \, {\left (4 \, \sqrt {x} - 17\right )} {\left (\sqrt {x} + 1\right )} + 133\right )} {\left (\sqrt {x} + 1\right )} - 295\right )} {\left (\sqrt {x} + 1\right )} + 195\right )} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} + \frac {1}{4} \, \log \left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2),x, algorithm="giac")

[Out]

1/120*((2*((4*(5*sqrt(x) - 26)*(sqrt(x) + 1) + 321)*(sqrt(x) + 1) - 451)*(sqrt(x) + 1) + 745)*(sqrt(x) + 1) -
405)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) + 1/60*((2*(3*(4*sqrt(x) - 17)*(sqrt(x) + 1) + 133)*(sqrt(x) + 1) - 2
95)*(sqrt(x) + 1) + 195)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) + 1/4*log(sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 65, normalized size = 0.62 \begin {gather*} -\frac {\sqrt {\sqrt {x}-1}\, \sqrt {\sqrt {x}+1}\, \left (-8 \sqrt {x -1}\, x^{\frac {5}{2}}+2 \sqrt {x -1}\, x^{\frac {3}{2}}+3 \ln \left (\sqrt {x}+\sqrt {x -1}\right )+3 \sqrt {x -1}\, \sqrt {x}\right )}{24 \sqrt {x -1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)*(x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2),x)

[Out]

-1/24*(x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2)*(-8*(x-1)^(1/2)*x^(5/2)+2*(x-1)^(1/2)*x^(3/2)+3*(x-1)^(1/2)*x^(1/2)+
3*ln(x^(1/2)+(x-1)^(1/2)))/(x-1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 47, normalized size = 0.45 \begin {gather*} \frac {1}{3} \, {\left (x - 1\right )}^{\frac {3}{2}} x^{\frac {3}{2}} + \frac {1}{4} \, {\left (x - 1\right )}^{\frac {3}{2}} \sqrt {x} + \frac {1}{8} \, \sqrt {x - 1} \sqrt {x} - \frac {1}{8} \, \log \left (2 \, \sqrt {x - 1} + 2 \, \sqrt {x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2),x, algorithm="maxima")

[Out]

1/3*(x - 1)^(3/2)*x^(3/2) + 1/4*(x - 1)^(3/2)*sqrt(x) + 1/8*sqrt(x - 1)*sqrt(x) - 1/8*log(2*sqrt(x - 1) + 2*sq
rt(x))

________________________________________________________________________________________

mupad [B]  time = 31.39, size = 632, normalized size = 6.08 \begin {gather*} -\frac {\mathrm {atanh}\left (\frac {\sqrt {\sqrt {x}-1}-\mathrm {i}}{\sqrt {\sqrt {x}+1}-1}\right )}{2}-\frac {\frac {35\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^3}{6\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^3}+\frac {757\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^5}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^5}+\frac {7339\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^7}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^7}+\frac {41929\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^9}{3\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^9}+\frac {25661\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{11}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{11}}+\frac {25661\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{13}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{13}}+\frac {41929\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{15}}{3\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{15}}+\frac {7339\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{17}}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{17}}+\frac {757\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{19}}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{19}}+\frac {35\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{21}}{6\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{21}}-\frac {{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{23}}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{23}}-\frac {\sqrt {\sqrt {x}-1}-\mathrm {i}}{2\,\left (\sqrt {\sqrt {x}+1}-1\right )}}{1+\frac {66\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^4}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^4}-\frac {220\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^6}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^6}+\frac {495\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^8}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^8}-\frac {792\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{10}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{10}}+\frac {924\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{12}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{12}}-\frac {792\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{14}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{14}}+\frac {495\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{16}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{16}}-\frac {220\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{18}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{18}}+\frac {66\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{20}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{20}}-\frac {12\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{22}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{22}}+\frac {{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{24}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{24}}-\frac {12\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^2}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)*(x^(1/2) - 1)^(1/2)*(x^(1/2) + 1)^(1/2),x)

[Out]

- atanh(((x^(1/2) - 1)^(1/2) - 1i)/((x^(1/2) + 1)^(1/2) - 1))/2 - ((35*((x^(1/2) - 1)^(1/2) - 1i)^3)/(6*((x^(1
/2) + 1)^(1/2) - 1)^3) + (757*((x^(1/2) - 1)^(1/2) - 1i)^5)/(2*((x^(1/2) + 1)^(1/2) - 1)^5) + (7339*((x^(1/2)
- 1)^(1/2) - 1i)^7)/(2*((x^(1/2) + 1)^(1/2) - 1)^7) + (41929*((x^(1/2) - 1)^(1/2) - 1i)^9)/(3*((x^(1/2) + 1)^(
1/2) - 1)^9) + (25661*((x^(1/2) - 1)^(1/2) - 1i)^11)/((x^(1/2) + 1)^(1/2) - 1)^11 + (25661*((x^(1/2) - 1)^(1/2
) - 1i)^13)/((x^(1/2) + 1)^(1/2) - 1)^13 + (41929*((x^(1/2) - 1)^(1/2) - 1i)^15)/(3*((x^(1/2) + 1)^(1/2) - 1)^
15) + (7339*((x^(1/2) - 1)^(1/2) - 1i)^17)/(2*((x^(1/2) + 1)^(1/2) - 1)^17) + (757*((x^(1/2) - 1)^(1/2) - 1i)^
19)/(2*((x^(1/2) + 1)^(1/2) - 1)^19) + (35*((x^(1/2) - 1)^(1/2) - 1i)^21)/(6*((x^(1/2) + 1)^(1/2) - 1)^21) - (
(x^(1/2) - 1)^(1/2) - 1i)^23/(2*((x^(1/2) + 1)^(1/2) - 1)^23) - ((x^(1/2) - 1)^(1/2) - 1i)/(2*((x^(1/2) + 1)^(
1/2) - 1)))/((66*((x^(1/2) - 1)^(1/2) - 1i)^4)/((x^(1/2) + 1)^(1/2) - 1)^4 - (12*((x^(1/2) - 1)^(1/2) - 1i)^2)
/((x^(1/2) + 1)^(1/2) - 1)^2 - (220*((x^(1/2) - 1)^(1/2) - 1i)^6)/((x^(1/2) + 1)^(1/2) - 1)^6 + (495*((x^(1/2)
 - 1)^(1/2) - 1i)^8)/((x^(1/2) + 1)^(1/2) - 1)^8 - (792*((x^(1/2) - 1)^(1/2) - 1i)^10)/((x^(1/2) + 1)^(1/2) -
1)^10 + (924*((x^(1/2) - 1)^(1/2) - 1i)^12)/((x^(1/2) + 1)^(1/2) - 1)^12 - (792*((x^(1/2) - 1)^(1/2) - 1i)^14)
/((x^(1/2) + 1)^(1/2) - 1)^14 + (495*((x^(1/2) - 1)^(1/2) - 1i)^16)/((x^(1/2) + 1)^(1/2) - 1)^16 - (220*((x^(1
/2) - 1)^(1/2) - 1i)^18)/((x^(1/2) + 1)^(1/2) - 1)^18 + (66*((x^(1/2) - 1)^(1/2) - 1i)^20)/((x^(1/2) + 1)^(1/2
) - 1)^20 - (12*((x^(1/2) - 1)^(1/2) - 1i)^22)/((x^(1/2) + 1)^(1/2) - 1)^22 + ((x^(1/2) - 1)^(1/2) - 1i)^24/((
x^(1/2) + 1)^(1/2) - 1)^24 + 1)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{\frac {3}{2}} \sqrt {\sqrt {x} - 1} \sqrt {\sqrt {x} + 1}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)*(-1+x**(1/2))**(1/2)*(1+x**(1/2))**(1/2),x)

[Out]

Integral(x**(3/2)*sqrt(sqrt(x) - 1)*sqrt(sqrt(x) + 1), x)

________________________________________________________________________________________